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Algorithms should be developed to cater to specific prediction tasks _
« Computes performance metrics

Relevance Vector Machines Gaussian Process Regression Artificial Neural Networks
» Supervised learning algorithm using » Supervised learning belonging to the family * Universal function approximators
expectation maximization of least squares estimation algorithms * Widely used for data-driven learning, i.e.
- Stochastic sparse kernel method similar to - Bayesian framework to derive posteriors provide a well represented prognostic
Support Vector Machines from priors (history data) technique, e.g. DWNN, CPNN
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Key Issues Metrics
+ Performance evaluation is key for prognostics * APProach * Avariety of performance metrics developed
technology maturation and deployment — A variety of metrics are under investigation and specifically for prognostics
— A stringent performance evaluation is needed before being used to evaluate different data-driven —New metrics track performance dynamics
prognostics can be used in critical fielded applications algorlthm§ | —Metrics like a-A accuracy, convergence, relative
—e.g. a maintainer must trust a prediction before —New metrics are being developed and evaluated accuracy, and prediction horizon are introduced
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—Provide feedback to help improve algorithms —>
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» Lack of standardized methods for prognostic
performance evaluation calls for new metrics
customized for Prognostic Health Management mmg Precision
scenarios

—Need a better account of uncertainty management

_zggzrg;ﬁgge should improve as end-of-life gmg Computational Performance with run-to-failure characteristics

—Traditional metrics based on accuracy, precision, - http://t|..arc.nasa.gov/prOJe.ct/prognostlc.:-data-reposno.ry/
and robustness should be extended to suit —Data sets include mechanical, electrical, electronics,

rognostics Metrics can be classified under several categories and aerospace systems
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» A diverse set of prognostics applications are being
used for benchmarking

—NASA prognostics repository hosts variety of data sets
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